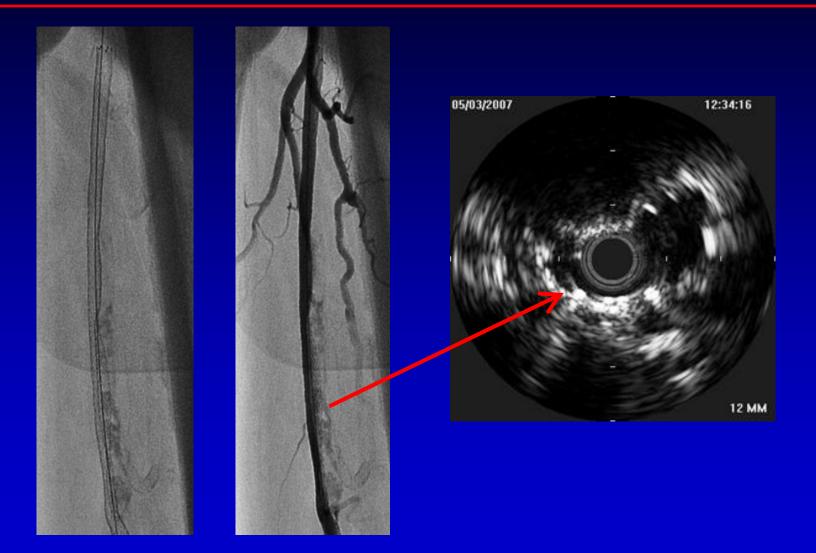
Is there a role for lithoplasty? Where and when

Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Director, Vascular Medicine St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship


- Grant/Research Support
- Consulting (non-compensated)
- Major Stock Shareholder/Equity

- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- Abbott, Covidien/Medtronic
- Covidien/Medtronic, Boston Scientific, Abbott
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular, Syntervention, Essential Medical
- None
- Innovation Vascular Partners
- None
- None

Shortcoming of SFA-Stents

Insufficient radial strength in calcified lesions

IN.PACT Global Long Lesion Imaging Cohort: Lesion/Procedural Characteristics

Lesions (N)	164	
<u>Lesion Type:</u> de novo restenotic (no ISR) ISR	83.2% (134/161) 16.8% (27/161) 0.0% (0/161)	
Lesion Length	26.40 \pm 8.61 cm	
Total Occlusions	60.4% (99/164)	
Calcification Severe	71.8% (117/163) 19.6% (32/163)	
RVD (mm)	4.594 ± 0.819	
Diameter Stenosis (pre- treatment)	90.9% ± 14.2	
Dissections: 0	37.9% (61/161)	
A-C	47.2% (76/161)	
D-F	14.9% (24/161)	

Schienert, D EuroPCR 2015 presentation

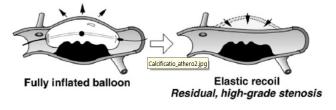
Device Success ^[1]	99.5% (442/444)
Procedure Success [2]	99.4% (155/156)
Clinical Success [3]	99.4% (155/156)
Pre-dilatation	89.8% (141/157)
Post-dilatation	39.1% (61/156)
Provisional Stent - LL 15-25 cm: - LL > 25 cm:	40.4% (63/156) 33.3% (33/99) 52.6% (30/57)

1. Device success: successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP

2. Procedure success: residual stenosis of \leq 50% (non-stented subjects) or \leq 30% (stented subjects) by core lab (if core lab was not available then the site reported estimate was used)

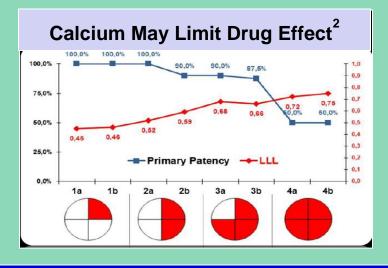
3. Clinical success: procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge

• Given that we treat lesions far and away more severe, calcified and longer than any pivotal trial


- We must answer the question is there a need for vessel preparation in anticipation of final therapy to include DCB or stent?
- Critically this answer is elusive given the data

Clinical Limitations & Unmet Needs

Calcium as a Barrier


Calcium Limits Vessel Expansion¹

Significant difference in vessel compliance leads to overstretch in non-diseased tissue causing dissections, recoil, excessive injury, and poor outcomes

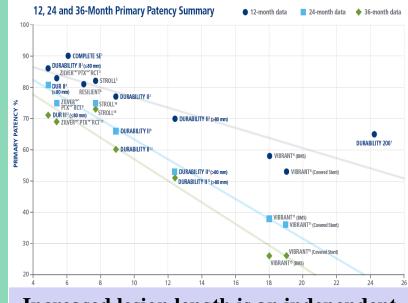
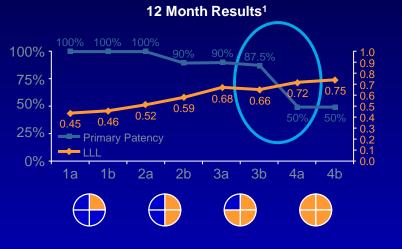


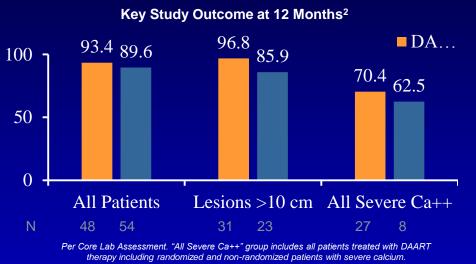
Figure 12.1. Elastic Recoil After PTCA of Calcified Lesions

Rather than cracking the hard, calcified atheroma, PTCA causes stretching of the contralateral plaque-free wall segment and ineffective dilatation. Freed MS, Safian RD; Manual of Interventional Cardiology, Ch. 12, 245-254

Longer Lesion Length



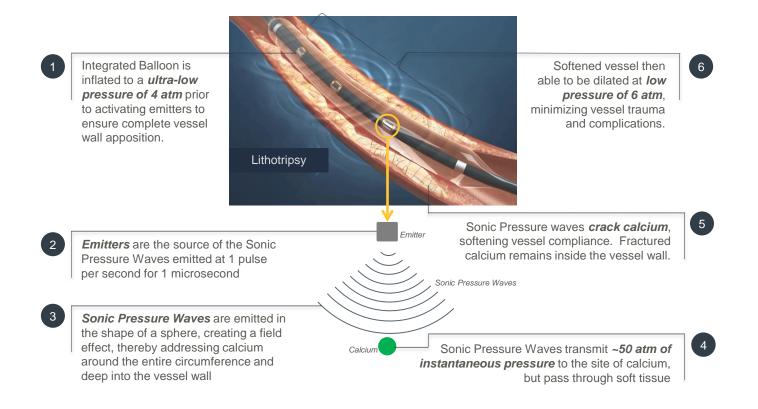
Increased lesion length is an independent predictor of decreased patency⁵.


Freed MS, Manual of Interventional Cardiology, ²Fanelli DEBELLUM, ³Laird, CCI, June 2010 ⁴SMART Control IFU, ⁵Matusumura, DURABILITY IIJVS, July 2013, ⁶Davaine, European Journal of Vascular and Endovascular Surgery 44 (2012)

Severe Calcium Acts as a Barrier to Biologic Uptake

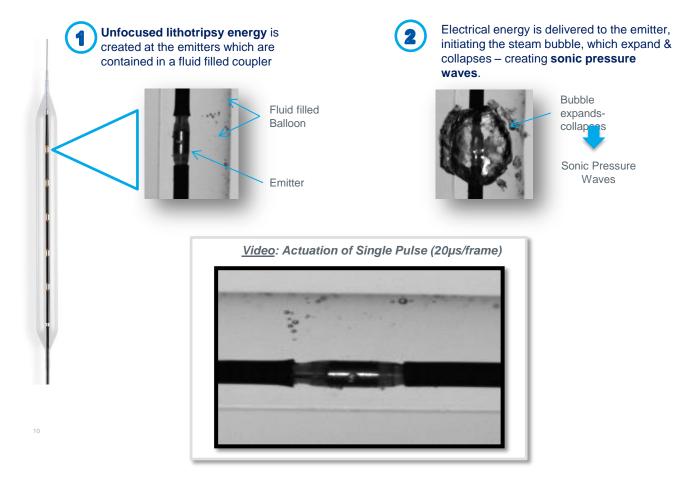
Calcification may impair the antiproliferative effect of drug coated balloons (DCB) by likely acting as a physical barrier to drug penetration itself

Calcium distribution evaluation by CTA (circumferential) and DSA (longitudinal)


¹Fanelli F et al. Calcium Burden Assessment and Impact on Drug-Eluting Balloons in Peripheral Arterial Disease. Cardiovasc Intervent Radiol (2014) 37:898–907. ²Zeller, et al. Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency: Twelve-Month Results of the DEFINITIVE AR Study. Circulation: Cardiovascular Interventions.2017 Sep;10(9). pii: e004848. doi:

Atherectomy Devices

	Jetstream™ Atherectomy System (Boston Scientific)	Peripheral Rotablator™ Rotational Atherectomy System (Boston Scientific)	Diamondback 360™, Stealth 360™ Atherectomy System (Cardiovascular Systems, Inc)	SilverHawk™, TurboHawk™ Plaque Excision System (Covidien)	Turbo-Elite™ Laser Atherectomy Catheter (Spectranetics)
			classic crown solid crown		
Front-Cutting	✓	✓			N/A
Differential Cutting	✓	✓	✓		N/A
Active Aspiration	✓				
Concentric Lumens	✓	✓			
Lesion Morphology:					
Calcium	✓	✓	✓	✓	✓
Soft/Fibrotic Plaque	~			✓	✓
Thrombus	 ✓ (indicated for thrombectomy and atherectomy) 				✓


Sources: Endovascular Today Buyer's Guide 2014. JETSTREAM System Brochure, Boston Scientific Website, 2014. Peripheral Rotablator product website, Boston Scientific, 2014. Diamondback 360 product website, CSI, 2014. Covidien website, Directional Atherectomy products, 2014. Turbo-Elite Laser Atherectomy Catheter Instructions for Use, May 2014.

How IVL Works: An Overview

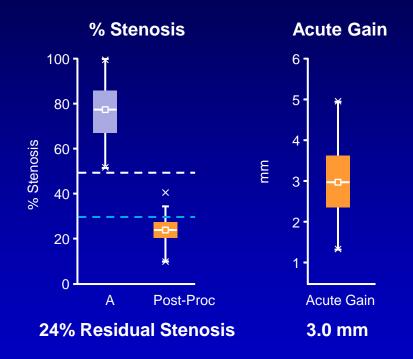
How Shockwave Creates Localized Lithotripsy

High Speed Sonic Pressure Wave Created Safely Inside Integrated Balloon

Peripheral IVL System: Clinical Programs

Enrolling

Study Completed


Objective: To study the safety and effectiveness of the IVL System in the treatment of *calcified*, stenotic femoropopliteal peripheral arteries.

Only study to enroll this significant of calcium burden with severe calcification 85% (PARC) as determined by the core lab and an average length of calcium of 98.1 mm

- Multi-center study, prospectively enrolling heavily calcified, stenotic fem-pop lesions
- Initial experience using IVL as a stand-alone treatment
- 8 centers in Europe and New Zealand
- 60 patients enrolled in 2015

	Pre-Procedure N=60
MLD (mm)	1.2 ± 0.8
% Diameter Stenosis	78.1 ± 13.6
RVD (mm)	5.7 ± 0.7
СТО	16.7% (10)
Lesion Length (mm)	78.6 ± 36.6
Calcified Length (mm)	98.1 ± 41.7
Calcification by PARC [¥]	
Moderate	8.3% (5)
Severe	85.0% (51)

Acute Angiographic Findings*

High Acute Gain, Low Residual Stenosis, and Minimal Complications

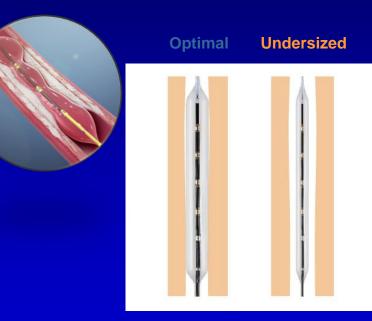
	Post-Procedure N=60
Dissections D ⁺ /E/F	1.7% (1)
Perforations	0% (0)
Abrupt Closure	0% (0)
Slow/No Reflow	0% (0)
Thrombosis	0% (0)

[†]Guidewire induced through recanalization of a CTO which was resolved with stent placement

Safety Results*

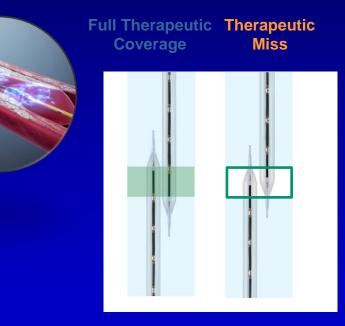
A sustained low rate of safety events occurred following treatment with IVL

	30 Days N=59	12 Months N=57
Major Adverse Events (MAE)	1.7% (1)	1.8% (1)
Emergency surgical revascularization of target limb	0% (0)	0% (0)
Unplanned target limb amputation	0% (0)	0% (0)
Symptomatic thrombus or emboli	0% (0)	0% (0)
Perforations or Gr D dissections w/ interventions	1.7% (1)	1.8% (1)


Primary Safety Endpoint

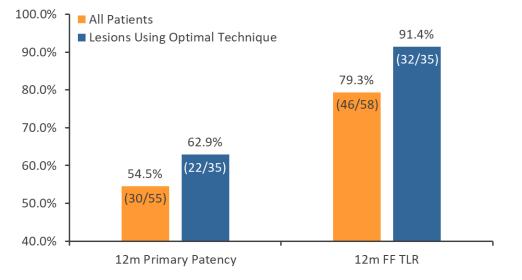
*Independent CEC Adjudicated

Optimal Technique Optimizes Therapeutic Energy


Oversize Device 10% vs RVD

Wall apposition facilitates efficient energy transfer. Optimized balloon sizing leads to improved patency

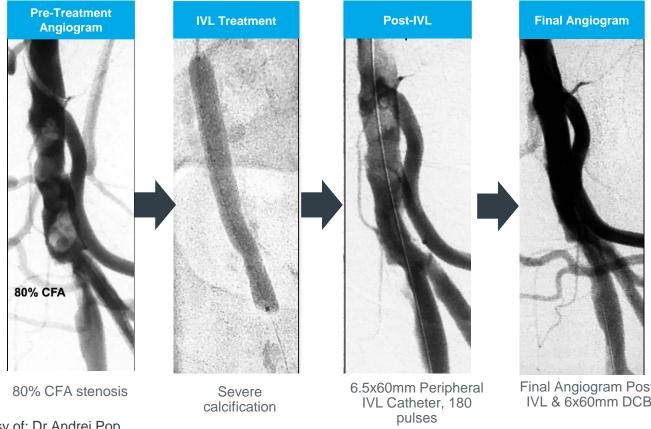
Overlap Segments by 1 cm


The sonic pressure waves create a spherical field effect that drops as the longitudinal distance from the emitters increases

Optimal IVL technique was associated with significant improvement in clinical patency

Primary patency: 54.5% for intent-to-treat versus 62.9% for those with optimal technique.

Clinically-driven TLR: 20.7% for intent-to-treat versus 8.6% for those with optimal technique.



Optimal technique was defined as correct balloon sizing and avoidance of therapeutic miss.

Primary Patency: Freedom from CD-TLR and freedom from >50% restenosis as determined by duplex ultrasound

*Core Lab Adjudicated

Case Example: IVL + DCB

Case courtesy of: Dr Andrei Pop

Final Angiogram Post-IVL & 6x60mm DCB

Complex Calcified Common Femoral/Profunda Lesion

Diagnostic Angiogram

High surgical risk due to severity of calcium and lesion within the profunda

Case courtesy of: Dr Nelson Bernardo

IVL Procedural Angiogram

IVL Treatment of CFA and **Proximal SFA**

Post IVL Treatment

Profunda with same IVL catheter

- · No dissections, perforations, or emboli.
- · No additional need for devices.
- · Resolution of symptoms

Does vessel prep still matter?

- DCB's have dramatically changed the SFA landscape
 - Either the data suggests that up-front therapy is beneficial and durable in short and intermediate lesion lengths or that in surrogate fashion work for restenosis
 - Current meta-anlalysis needs resolution
- RCT data compel discussion and treatment strategies
 - Vessel prep remains a key element of benefit for many technologies
 - Calcium remains a principal disruptor for final therapy

• **DISRUPT** may answer this question

- A "leave nothing behind" strategy appears to be the current trend for SFA therapy though no one group has shown the benefit beyond a modest SFA lesion length
- Lithoplasty appears well positioned for multiple applications and allow excellent vessel preparation in a myriad of anatomic locations